
NAG C Library Function Document

nag_opt_check_deriv (e04hcc)

1 Purpose

nag_opt_check_deriv (e04hcc) checks that a user-defined C function for evaluating an objective function
and its first derivatives produces derivative values which are consistent with the function values calculated.

2 Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_check_deriv (Integer n,

void (*objfun)(Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm),

const double x[], double *objf, double g[], Nag_Comm *comm, NagError *fail)

3 Description

The function nag_opt_nlp_solve (e04wdc) for minimizing a function of several variables requires the user
to supply a C function to evaluate the objective function F x1; x2; . . . ; xnð Þ and its first derivatives.
nag_opt_check_deriv (e04hcc) is designed to check the derivatives calculated by such a user-supplied
function. As well as the function to be checked (objfun), the user must supply a point

x ¼ x1; x2; . . . ; xnð ÞT at which the check is to be made.

nag_opt_check_deriv (e04hcc) first calls the supplied function objfun to evaluate F and its first derivatives

gj ¼
@F

@xj
, for j ¼ 1; 2; . . . ; n at x. The components of the user-supplied derivatives along two orthogonal

directions (defined by unit vectors p1 and p2, say) are then calculated; these will be gTp1 and gTp2
respectively. The same components are also estimated by finite differences, giving quantities

vk ¼
F xþ hpkð Þ � F xð Þ

h
, k ¼ 1; 2

where h is a small positive scalar. If the relative difference between v1 and gTp1 or between v2 and gTp2
is judged too large, an error indicator is set.

4 References

None.

5 Arguments

1: n – Integer Input

On entry: the number n of independent variables in the objective function.

Constraint: n � 1.

2: objfun – function, supplied by the user External Function

objfun must evaluate the objective function and its first derivatives at a given point. (The
minimization function nag_opt_nlp_solve (e04wdc) gives the user the option of resetting a
parameter, comm ! flag, to terminate the minimization process immediately. nag_opt_check_deriv
(e04hcc) will also terminate immediately, without finishing the checking process, if the parameter in
question is reset to a negative value.)

e04 – Minimizing or Maximizing a Function e04hcc

[NP3660/8] e04hcc.1

Its specification is:

void objfun (Integer n, const double x[], double *objf, double g[],
Nag_Comm *comm)

1: n – Integer Input

On entry: the number n of variables.

2: x½n� – const double Input

On entry: the point x at which F and its derivatives are required.

3: objf – double * Output

On exit: objfun must set objf to the value of the objective function F at the current point
x. If it is not possible to evaluate F then objfun should assign a negative value to
comm ! flag; nag_opt_check_deriv (e04hcc) will then terminate.

4: g½n� – double Output

On exit: unless comm ! flag is reset to a negative number, objfun must set g½j� 1� to
the value of the first derivative

@F

@xj
at the current point x for j ¼ 1; 2; . . . ; n

5: comm – Nag_Comm *

Pointer to structure of type Nag_Comm; the following members are relevant to objfun.

flag – Integer Input/Output

On entry: comm ! flag will be set to 2.

On exit: if objfun resets comm ! flag to some negative number then
nag_opt_check_deriv (e04hcc) will terminate immediately with the error indicator
NE_USER_STOP. If fail is supplied to nag_opt_check_deriv (e04hcc),
fail.errnum will be set to the user’s setting of comm ! flag.

first – Nag_Boolean Input

On entry: will be set to Nag_True on the first call to objfun and Nag_False for all
subsequent calls.

nf – Integer Input

On entry: the number of calculations of the objective function; this value will be
equal to the number of calls made to objfun including the current one.

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void * and char *
otherwise. Before calling nag_opt_check_deriv (e04hcc) these pointers may be
allocated memory by the user and initialized with various quantities for use by
objfun when called from nag_opt_check_deriv (e04hcc).

The array x must not be changed by objfun.

3: x½n� – const double Input

On entry: x½j� 1�, for j ¼ 1; 2; . . . ; n, must be set to the co-ordinates of a suitable point at which to
check the derivatives calculated by objfun. ‘Obvious’ settings, such as 0.0 or 1.0, should not be
used since, at such particular points, incorrect terms may take correct values (particularly zero), so

e04hcc NAG C Library Manual

e04hcc.2 [NP3660/8]

that errors could go undetected. Similarly, it is preferable that no two elements of x should be the
same.

4: objf – double * Output

On exit: unless the user sets comm ! flag negative in the first call of objfun, objf contains the
value of the objective function F xð Þ at the point given by the user in x.

5: g½n� – double Output

On exit: unless the user sets comm ! flag negative in the first call of objfun, g½j� 1� contains the
value of the derivative

@F

@xj
at the point given in x, as calculated by objfun, for j ¼ 1; 2; . . . ; n.

6: comm – Nag_Comm * Input/Output

On entry/on exit: structure containing pointers for communication with the user-defined function; see
the above description of objfun for details. If the user does not need to make use of this
communication feature the null pointer NAGCOMM_NULL may be used in the call to
nag_opt_check_deriv (e04hcc); comm will then be declared internally for use in calls to objfun.

7: fail – NagError * Input/Output

The NAG error parameter, see the Essential Introduction.

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_DERIV_ERRORS

Large errors were found in the derivatives of the objective function.

The user should check carefully the derivation and programming of expressions for the derivatives
of F xð Þ, because it is very unlikely that objfun is calculating them correctly.

NE_INT_ARG_LT

On entry, n must not be less than 1: n ¼ valueh i.

NE_USER_STOP

User requested termination, user flag value ¼ valueh i.
This exit occurs if the user sets comm ! flag to a negative value in objfun. If fail is supplied the
value of fail.errnum will be the same as the user’s setting of comm ! flag. The check on objfun
will not have been completed.

7 Accuracy

fail is set to NE_DERIV_ERRORS if

vk � gTpk
� �2 � h� gTpk

� �2 þ 1
� �

for k ¼ 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal to
ffiffi
�

p
,

where � is the machine precision as given by nag_machine_precision (X02AJC).

8 Further Comments

The user-defined function objfun is called three times.

e04 – Minimizing or Maximizing a Function e04hcc

[NP3660/8] e04hcc.3

Before using nag_opt_check_deriv (e04hcc) to check the calculation of first derivatives, the user should be
confident that objfun is calculating F correctly. The usual way of checking the calculation of the function
is to compare values of F xð Þ calculated by objfun at non-trivial points x with values calculated
independently. (‘Non-trivial’ means that, as when setting x before calling nag_opt_check_deriv (e04hcc),
co-ordinates such as 0.0 or 1.0 should be avoided.)

9 Example

Suppose that it is intended to use nag_opt_nlp_solve (e04wdc) to minimize

F ¼ x1 þ 10x2ð Þ2 þ 5 x3 � x4ð Þ2 þ x2 � 2x3ð Þ4 þ 10 x1 � x4ð Þ4.
The following program could be used to check the first derivatives calculated by the required function
objfun. (The test of whether comm ! flag 6¼ 0 in objfun is present for when objfun is called by
nag_opt_nlp_solve (e04wdc). nag_opt_check_deriv (e04hcc) will always call objfun with comm ! flag
set to 2.)

9.1 Program Text

/* nag_opt_check_deriv (e04hcc) Example Program.
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
* Mark 7 revised, 2001.
* Mark 8 revised, 2004.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef __cplusplus
extern "C" {
#endif

static void objfun(Integer n, double x[], double *f,
double g[], Nag_Comm *comm);

#ifdef __cplusplus
}
#endif

#define NMAX 4
static void objfun(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm)
{

/* objfun evaluates the objective function and its derivatives. */

double x1, x2, x3, x4;
double tmp, tmp1, tmp2, tmp3, tmp4;

x1 = x[0];
x2 = x[1];
x3 = x[2];
x4 = x[3];

/* Supply a single function value */
tmp1 = x1 + 10.0*x2;
tmp2 = x3 - x4;
tmp3 = x2 - 2.0*x3, tmp3 *= tmp3;
tmp4 = x1 - x4, tmp4 *= tmp4;
*objf = tmp1*tmp1 + 5.0*tmp2*tmp2 + tmp3*tmp3 + 10.0*tmp4*tmp4;

if (comm->flag != 0)
{

/* Calculate the derivatives */

e04hcc NAG C Library Manual

e04hcc.4 [NP3660/8]

tmp = x1 - x4;
g[0] = 2.0*(x1 + 10.0*x2) + 40.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[1] = 20.0*(x1 + 10.0*x2) + 4.0*tmp*tmp*tmp;
tmp = x2 - 2.0*x3;
g[2] = 10.0*(x3 - x4) - 8.0*tmp*tmp*tmp;
tmp = x1 - x4;
g[3] = 10.0*(x4 - x3) - 40.0*tmp*tmp*tmp;

}
} /* objfun */

int main(void)
{

Integer exit_status=0, i, n;
NagError fail;
double *g=0, objf, *x=0;

INIT_FAIL(fail);

Vprintf("nag_opt_check_deriv (e04hcc) Example Program Results.\n");

n = NMAX;
if (n>=1)

{
if (!(x = NAG_ALLOC(n, double)) ||

!(g = NAG_ALLOC(n, double)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
}

else
{

Vprintf("Invalid n.\n");
exit_status = 1;
return exit_status;

}
x[0] = 1.46;
x[1] = -0.82;
x[2] = 0.57;
x[3] = 1.21;

Vprintf("\nThe test point is:\n");
for (i = 0; i < n; ++i)

Vprintf(" %8.4f", x[i]);
Vprintf("\n");

/* Call derivative checker */
/* nag_opt_check_deriv (e04hcc).
* Derivative checker for use with nag_opt_bounds_deriv
* (e04kbc)
*/

nag_opt_check_deriv(n, objfun, x, &objf, g, NAGCOMM_NULL, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from nag_opt_check_deriv (e04hcc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

Vprintf("\nFirst derivatives are consistent with function values.\n\n");
Vprintf("At the test point, objfun gives the function value %11.4e\n", objf);
Vprintf("and the 1st derivatives\n\n");
for (i = 0; i < n; ++i)

Vprintf(" %9.3e ", g[i]);
Vprintf("\n");

END:
if (x) NAG_FREE(x);
if (g) NAG_FREE(g);
return exit_status;

e04 – Minimizing or Maximizing a Function e04hcc

[NP3660/8] e04hcc.5

}

9.2 Program Data

None.

9.3 Program Results

nag_opt_check_deriv (e04hcc) Example Program Results.

The test point is:
1.4600 -0.8200 0.5700 1.2100

First derivatives are consistent with function values.

At the test point, objfun gives the function value 6.2273e+01
and the 1st derivatives

-1.285e+01 -1.649e+02 5.384e+01 5.775e+00

e04hcc NAG C Library Manual

e04hcc.6 (last) [NP3660/8]

	e04hcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	n
	objfun
	n
	x
	objf
	g
	comm
	flag
	first
	nf
	user
	iuser
	p

	x
	objf
	g
	comm
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_DERIV_ERRORS
	NE_INT_ARG_LT
	NE_USER_STOP

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

